

 Flop Phoenix

 v0.22.8

 Table of contents

 	Flop Phoenix

 	Changelog

 	

 	Modules

 	Flop.Phoenix

 	Exceptions

 	Flop.Phoenix.InvalidFilterFieldConfigError

 	Flop.Phoenix.NoMetaFormError

 	Flop.Phoenix.PathOrJSError

Flop Phoenix

[image: CI] [image: Hex] [image: Coverage Status]
Flop Phoenix provides Phoenix components for pagination, sortable tables, and
filter forms with Flop and
Ecto.

 Installation

To start using flop_phoenix, add it to your list of dependencies in mix.exs
of your Phoenix application:
Add flop_phoenix to your list of dependencies in the mix.exs of your Phoenix
application.
def deps do
 [
 {:flop_phoenix, "~> 0.22.8"}
]
end
Next, set up your business logic according to the
Flop documentation.

 Usage

First, define a function that utilizes Flop.validate_and_run/3 to query your
desired list. For example:
defmodule MyApp.Pets do
 alias MyApp.Pet

 def list_pets(params) do
 Flop.validate_and_run(Pet, params, for: Pet)
 end
end

 LiveView

In the LiveView, fetch the data and assign it alongside the meta data to the
socket.
defmodule MyAppWeb.PetLive.Index do
 use MyAppWeb, :live_view

 alias MyApp.Pets

 @impl Phoenix.LiveView
 def handle_params(params, _, socket) do
 case Pets.list_pets(params) do
 {:ok, {pets, meta}} ->
 {:noreply, assign(socket, %{pets: pets, meta: meta})}

 {:error, _meta} ->
 # This will reset invalid parameters. Alternatively, you can assign
 # only the meta and render the errors, or you can ignore the error
 # case entirely.
 {:noreply, push_navigate(socket, to: ~p"/pets")}
 end
 end
end
If you prefer the Flop.Phoenix components not to reflect pagination, sorting,
and filtering parameters in the URL, fetch and assign the data in the
Phoenix.LiveView.handle_event/3 callback. You need to pass a
Phoenix.LiveView.JS command as an attribute to the components in that case.

 Controller

For non-LiveView ("dead") views, pass the data and Flop meta struct to your
template in the controller.
defmodule MyAppWeb.PetController do
 use MyAppWeb, :controller

 alias MyApp.Pets

 action_fallback MyAppWeb.FallbackController

 def index(conn, params) do
 with {:ok, {pets, meta}} <- Pets.list_pets(params) do
 render(conn, :index, meta: meta, pets: pets)
 end
 end
end

 Sortable tables and pagination

To add a sortable table and pagination links, you can add the following to your
template:
<h1>Pets</h1>

<Flop.Phoenix.table items={@pets} meta={@meta} path={~p"/pets"}>
 <:col :let={pet} label="Name" field={:name}><%= pet.name %></:col>
 <:col :let={pet} label="Age" field={:age}><%= pet.age %></:col>
</Flop.Phoenix.table>

<Flop.Phoenix.pagination meta={@meta} path={~p"/pets"} />
In this context, path points to the current route, and Flop Phoenix appends
pagination, filtering, and sorting parameters to it. You can use verified
routes, route helpers, or custom path builder functions. You'll find
explanations for the different formats in the documentation for
Flop.Phoenix.build_path/3.
Note that the field attribute in the :col slot is optional. If set and the
corresponding field in the schema is defined as sortable, the table header for
that column will be interactive, allowing users to sort by that column. However,
if the field isn't defined as sortable, or if the field attribute is omitted, or
set to nil or false, the table header will not be clickable.
By using the for option in your Flop query, Flop Phoenix can identify which
table columns are sortable. Additionally, it omits the order and page_size
parameters if they align with the default values specified via Flop.Schema.
You also have the option to pass a Phoenix.LiveView.JS command instead of or
in addition to a path. For more details, please refer to the component
documentation.
If you wish to implement cursor-based pagination, see
Flop.Phoenix.cursor_pagination/1 for setup instructions.

 Filter forms

Flop Phoenix implements the Phoenix.HTML.FormData for the Flop.Meta struct.
As such, you can easily pass the struct to Phoenix form functions. One
straightforward way to render a filter form is through the
Flop.Phoenix.filter_fields/1 component, as shown below:
attr :fields, :list, required: true
attr :meta, Flop.Meta, required: true
attr :id, :string, default: nil
attr :on_change, :string, default: "update-filter"
attr :target, :string, default: nil

def filter_form(%{meta: meta} = assigns) do
 assigns = assign(assigns, form: Phoenix.Component.to_form(meta), meta: nil)

 ~H"""
 <.form
 for={@form}
 id={@id}
 phx-target={@target}
 phx-change={@on_change}
 phx-submit={@on_change}
 >
 <.filter_fields :let={i} form={@form} fields={@fields}>
 <.input
 field={i.field}
 label={i.label}
 type={i.type}
 phx-debounce={120}
 {i.rest}
 />
 </.filter_fields>

 <button class="button" name="reset">reset</button>
 </.form>
 """
end
Note that while the filter_fields component produces all necessary hidden
inputs, it doesn't automatically render inputs for filter values. Instead, it
passes the necessary details to the inner block, allowing you to customize the
filter inputs with your custom input component.
You can pass additional options for each field. Refer to the
Flop.Phoenix.filter_fields/1 documentation for details.
Now, you can render a filter form like so:
<.filter_form
 fields={[:name, :email]}
 meta={@meta}
 id="user-filter-form"
/>
You will need to handle the update-filter event with the handle_event/3
callback function of your LiveView.
@impl true
def handle_event("update-filter", params, socket) do
 params = Map.delete(params, "_target")
 {:noreply, push_patch(socket, to: ~p"/pets?#{params}")}
end

 LiveView streams

To use LiveView streams, you can change your handle_params/3 function as
follows:
def handle_params(params, _, socket) do
 case Pets.list_pets(params) do
 {:ok, {pets, meta}} ->
 {:noreply,
 socket
 |> assign(:meta, meta)
 |> stream(:pets, pets, reset: true)}

 # ...
 end
end
When using LiveView streams, the data being passed to the table component
differs. Instead of passing @pets, you'll need to use @streams.pets.
The stream values are tuples, with the DOM ID as the first element and the items
(in this case, Pets) as the second element. You need to match on these tuples
within the :let attributes of the table component.
<Flop.Phoenix.table items={@streams.pets} meta={@meta} path={~p"/pets"}>
 <:col :let={{_, pet}} label="Name" field={:name}><%= pet.name %></:col>
 <:col :let={{_, pet}} label="Age" field={:age}><%= pet.age %></:col>
</Flop.Phoenix.table>

Changelog

 Unreleased

 [0.22.8] - 2024-03-23

 Added

	Support :col_class attr on :col and :action slots in addition to :col_style.

 Changed

	Don't render empty style attributes on col elements in colgroup.

 Fixed

	The page range calculation in the Flop.Phoenix.pagination/1 was incorrect
towards the last pages.

 [0.22.7] - 2024-03-02

 Changed

	Loosen version requirement for phoenix_html.

 Fixed

	Warning when wrapping table component and passing on :col slot as attribute.

 [0.22.6] - 2024-01-14

 Changed

	Support Flop 0.25.0.
	Update documentation examples for filter forms.

 [0.22.5] - 2023-12-24

 Changed

	Requires phoenix_html ~> 4.0.

 [0.22.4] - 2023-11-18

 Fixed

	Don't render li element if a pagination link is not rendered.

 [0.22.3] - 2023-11-14

 Changed

	Support Flop ~> 0.24.0.

 [0.22.2] - 2023-10-19

 Fixed

	Numbered pagination links were not wrapped in li elements.

 [0.22.1] - 2023-09-28

 Changed

	Allow to use Phoenix.HTML.safe/0 as a label attribute in table headers.

 [0.22.0] - 2023-09-26

 Added

	Added directions attribute to the col slot of the table component. This
allows you to override the default sort directions, e.g. to specify
nulls-first or nulls-last.
	Added thead_th_attrs and th_wrapper_attrs attributes to the col slot
of the table component.
	Added thead_th_attrs attribute to the action slot of the table component.

 Changed

	Renamed attrs attribute on the col and action slots of the table
component to tbody_td_attrs in order to match the naming of the global
table options.

 Upgrade guide

Rename the attrs attribute to tbody_td_attrs in both the col slot and the
action slot:
<Flop.Phoenix.table items={@pets} meta={@meta} path={~p"/pets"}>
- <:col :let={p} attrs={[class="my-class"]}><%= p.id %></:col>
- <:action :let={p} attrs={[class="my-class"]}>button</:col>
+ <:col :let={p} tbody_td_attrs={[class="my-class"]}><%= p.id %></:col>
+ <:action :let={p} tbody_td_attrs={[class="my-class"]}>button</:col>
</Flop.Phoenix.table>

 [0.21.2] - 2023-09-26

 Changed

	Support phoenix_liveview ~> 0.20.

 [0.21.1] - 2023-08-05

 Added

	Allow passing a function to the attrs option of table component's :action
slot. Before, this was only supported in the :col slot.

 Changed

	Improve some error messages and documentation examples.

 Fixed

	In the :col and :action slots of the table component, the attrs option
did not properly override the attributes set with the :tbody_td_attrs
option.

 [0.21.0] - 2023-07-17

 Changed

	Depend on flop ~> 0.22.0.

 [0.20.0] - 2023-07-09

 Added

	Added an on_paginate attribute to the pagination and cursor_pagination
components. This attribute takes a Phoenix.LiveView.JS command as a value.
The attribute can be combined with the path attribute, in which case the URL
will be patched and the the given JS command is executed.
	Similarly, an on_sort attribute was added to the table component.
	Allow setting tbody_tr_attrs to a function that takes the current row item
as an argument and returns a list of attributes.
	Allow setting the attrs attribute of the :col slot of the table component
to a function that takes the current row item as an argument and returns a
list of attributes.

 Changed

	The table ID falls back to "sortable-table" if no schema module is used.
	The tbody ID was changed to {id}-tbody.
	The table container ID is set to {id}-container now.
	The table ID is set to {id} now.

 Deprecated

	The show and hide attributes of the :col slot of the table component are
now deprecated in favor of the :if attribute.
	The event attribute of the pagination, cursor pagination and table
components has been deprecated in favor of on_pagination and on_sort.

 [0.19.1] - 2023-06-30

 Changed

	The table component only renders an ascending/descending order indicator in
the column header for the first order field, instead rendering one in the
column headers for all ordered fields.
	Support Flop 0.22.

 [0.19.0] - 2023-05-30

 Changed

	Necessary updates for phoenix_live_view ~> 0.19.0.
	Requires phoenix_live_view ~> 0.19.0.
	Remove previously deprecated Flop.Phoenix.pop_filter/2. Use
Flop.Filter.pop/3 instead.

 [0.18.2] - 2023-05-08

 Changed

	Added hidden attribute to hidden inputs rendered by filter_fields
component in order to solve CSS spacing issues.

 [0.18.1] - 2023-03-18

 Changed

	Added support for LiveView streams to the table component. To this end,
row_id, row_item and id attributes were added to the component,
following the example of Phoenix 1.7. The id attribute is added to the
tbody. If no id is explicitly set, a default value will be used depending
on the schema name.

 [0.18.0] - 2023-02-25

 Changed

	Added dependency on Phoenix.HTML ~> 3.3.0.
	The filter_fields component now passes the Phoenix.HTML.FormField struct
introduced in Phoenix.HTML 3.3.0 to the inner block.
	Support :as option for filter inputs with Phoenix.HTML.FormData/4
(inputs_for).
	Phoenix.HTML.FormData.input_type/2 now considers the Ecto type for join,
custom and compound fields.
	Remove support for path_helper assigns, previously deprecated in 0.15.
	Deprecate Flop.Phoenix.pop_filter/2.

 How to upgrade

If your input component already knows how to handle the
Phoenix.HTML.FormField struct, you can update the inner block for
filter_fields like this:
<.filter_fields :let={i} form={f} fields={[:email, :name]}>
 <.input
- field={{i.form, i.field}}
+ field={i.field}
 type={i.type}
 label={i.label}
- id={i.id}
- name={i.name}
- value={i.value}
 {i.rest}
 />
</.filter_fields>
If your input component still expects the individual assigns, you can update
the inner block like this:
<.filter_fields :let={i} form={f} fields={[:email, :name]}>
 <.input
- field={{i.form, i.field}}
+ field={{i.field.form, i.field.field}}
 type={i.type}
 label={i.label}
- id={i.id}
- name={i.name}
- value={i.value}
+ id={i.field.id}
+ name={i.field.name}
+ value={i.field.value}
 {i.rest}
 />
</.filter_fields>
For an upgrade example for the path_helper assign, see the changelog entry for
version 0.15.0.

 [0.17.2] - 2023-01-15

 Changed

	Support Flop 0.19.

 [0.17.1] - 2022-11-15

 Added

	Allow passing an offset when generating filter inputs with
Phoenix.HTML.Form.inputs_for/3.

 [0.17.0] - 2022-10-27

 Added

	New option tbody_attrs for table component.
	New attribute row_click and slot action for table component.

 Changed

	To pass additional attributes to a column, you will now have to use the
attrs attribute. This was necessary because defining a global attribute on
a slot causes a compile-time error in phoenix_live_view 0.18.3.

<Flop.Phoenix.table items={@pets} meta={@meta} path={~p"/pets"}>
- <:col :let={p} class="my-class"><%= p.id %></:col>
+ <:col :let={p} attrs={[class="my-class"]}><%= p.id %></:col>
</Flop.Phoenix.table>

 [0.16.0] - 2022-10-10

 Added

	New Phoenix component Flop.Phoenix.hidden_inputs_for_filter/1.

 Changed

	Major refactoring of Flop.Phoenix.filter_fields/1. Instead of giving you the
rendered <label> and <input> elements, the component now only passes the
necessary arguments to the inner block. You will have to pass these arguments
to your own input component (or whatever you name it). The field option
format has also been updated. These changes were made to fix warnings emitted
by live view 0.18.1, and also accompany current changes in Phoenix that thin
out Phoenix.HTML / Phoenix.HTML.Form in favor of Phoenix components for
inputs.
	Require flop >= 0.17.1 and < 0.19.0.

 Removed

	Removed Flop.Phoenix.filter_hidden_inputs_for/1. This function is not used
internally anymore. You can either use Phoenix.HTML.Form.hidden_inputs_for/1
(Phoenix.HTML ~> 3.2), or use Flop.Phoenix.hidden_inputs_for_filter/1,
which does the same, but as a Phoenix component.
	Removed Flop.Phoenix.filter_label/1 and Flop.Phoenix.filter_input/1. With
the changes to Flop.Phoenix.filter_fields/1 and the move away from the
input rendering functions of Phoenix.HTML.Form, these functions don't have
any value anymore. Read the documentation of
Flop.Phoenix.hidden_inputs_for_filter/1 for an example on how to easily
render the fields of individual filters.

 Fixed

	Fixed warnings about tainted variables in live view 0.18.1.
	Fixed an issue where default parameters set in the backend module were not
removed from the query parameters.
	Fixed URLs ending with ? when no query parameters are necessary if the path
is passed as a string.

 How to upgrade

Filter fields component
Previously, you would render a filter form like this:
<.form :let={f} for={@meta}>
 <Flop.Phoenix.filter_fields :let={entry} form={f} fields={[:name, :email]}>
 <div class="field">
 <%= entry.label %>
 <%= entry.input %>
 </div>
 </Flop.Phoenix.filter_fields>
</.form>
In this example, entry.label and entry.input are complete <label> and
<input> elements with all attributes set. You will need to change this to:
<.form :let={f} for={@meta}>
 <.filter_fields :let={i} form={f} fields={[:name, :email]}>
 <.input
 id={i.id}
 name={i.name}
 label={i.label}
 type={i.type}
 value={i.value}
 field={{i.form, i.field}}
 {i.rest}
 />
 </.filter_fields>
</.form>
You will have to define an input component in your project. You can take a
hint from the input component that is generated as part of the Components
module by Phoenix 1.7.
Field options
Remove input_opts and label_opts and pass them directly to your input
component, or add them directly to the input component. If you passed an id
to filter_fields, set in on the form instead.
<.filter_fields
 :let={i}
 form={f}
 fields={[:name]}
- id="some-id"
- input_opts={[class: "input", phx_debounce: 100]}
- label_opts={[class: "label"]}
>
 <.input
 ...
+ class="input"
+ phx-debounce={100}
 />
</.filter_fields>
Use strings instead of atoms to set the type, and use the types that your
input component understands.
<.filter_fields
 :let={i}
 form={f}
 fields={[
- name: [type: :text_input],
+ name: [type: "text"],
- age: [type: :number_input],
+ age: [type: "number"],
- phone: [type: :telephone_input],
+ phone: [type: "tel"]
]}
>
If you passed additional input function options in a tuple, take them out of
the tuple and add them to the keyword list instead.
<.filter_fields
 :let={i}
 form={f}
 fields={[
- role: [type: {:select, ["author", "editor"], class: "select"}]
+ role: [type: "select", options: ["author", "editor"], class: "select"]
]}
>
The default option is not handled for you anymore. You can still set it, but
it will just be passed on as part of the rest options, so your input
component will need to handle it.
Filter label and input components
If you used Flop.Phoenix.filter_label/1 or Flop.Phoenix.filter_input/1
before, follow the example in the documentation of
Flop.hidden_inputs_for_filter/1 to render the inputs of individual filters
without the removed components.

 [0.15.2] - 2022-10-10

 Changed

	Change version requirement for Flop to >= 0.15.0 and < 0.19.0.

 [0.15.1] - 2022-09-30

 Fixed

	Typespec of Flop.Phoenix.build_path/3.

 [0.15.0] - 2022-09-22

 Added

This release adds support for passing URI strings instead of MFA or FA tuples to
components and helper functions. This allows you to use the library with the
verified routes introduced in Phoenix 1.7. Alternatively, you can now also
choose to pass a 1-ary path builder function. See Flop.Phoenix.build_path/3
for examples. Passing tuples pointing to route helpers is still supported.
	Added an example for a custom filter form component to the readme.
	Support passing a URI string as a path to the table, pagination and
cursor_pagination components and to build_path/3.
	Support passing a 1-ary path builder function to the table, pagination and
cursor_pagination components and to build_path/3.
	New function Flop.Phoenix.pop_filter/2.

 Changed

	Require live_view ~> 0.18.0.
	Deprecate path_helper assign in favor of path.
	Use declarative assigns and replace Phoenix.LiveView.Helpers.live_patch/1
with Phoenix.Component.link/1.
	Flop.Phoenix.filter_input/1 requires additional options for the input
function to be passed in the input_opts assign, instead of passing them
directly to the component. This was necessary because the global attributes
you can define with declarative assigns in LiveView 0.18 are meant for HTML
attributes, while the input options may contain any additional attributes
necessary (e.g. a list of select options that are rendered as option
elements).

 Fixed

	Apply show and hide attribute for columns to colgroup as well.
	Correctly handle multiple inputs for the same field in Flop.filter_fields/1.

 How to upgrade

Rename the path_helper assigns of table, pagination and
cursor_pagination components to path.
- <.pagination meta={@meta} path_helper={{Routes, :pet_path, [@socket, :index]}} />
+ <.pagination meta={@meta} path={{Routes, :pet_path, [@socket, :index]}} />
Wrap additional options passed to Flop.Phoenix.filter_input/1 into a single
input_opts assign.
- <.filter_input form={ff} class="select" options={[:some, :options]} />
+ <.filter_input form={ff} input_opts={[class: "select", options: [:some, :options]]} />

 [0.14.2] - 2022-08-26

 Changed

	Support Flop ~> 0.17.0.

 [0.14.1] - 2022-03-22

 Changed

	Support Flop ~> 0.16.0.

 [0.14.0] - 2022-02-22

 Added

	symbol_unsorted option for the table component.
	caption assign for the table component.
	col_style assign for the :col slot of the table component.

 Changed

	Additional attributes passed to the <:col> slot will now be added as
attributes to the <td> tags.

 [0.13.0] - 2021-11-14

 Added

	Add cursor_pagination/1 component.

 Changed

	The pagination component adds the disabled class to the span that is
displayed when the previous or next link is disabled now. Previously, the
disabled attribute was set on the span. The class can be customized with
the :disabled_class option.

 [0.12.0] - 2021-11-08

 Added

	Implement the Phoenix.HTML.FormData protocol for Flop.Meta. This means
you can pass the meta struct as :for option to the Phoenix form_for
functions now.
	Add the functions filter_fields/1, filter_input/1 and filter_label/1.

 Changed

	Remove :for option. The schema module is now automatically derived from the
meta struct.

 [0.11.1] - 2021-10-31

 Added

	Adds hide and show options to table :col.

 Changed

	Passing a label to a table :col is now optional.

 [0.11.0] - 2021-10-30

 Changed

	The path_helper_args assign has been removed in favor of passing mfa
tuples as path_helper.
	In the same vein, Flop.Phoenix.build_path/4 has been replaced with
Flop.Phoenix.build_path/3, which also takes a tuple as the first argument.
	The table component has been changed to use slots. The headers,
footer, row_func and row_opts assigns have been removed. Also, the
tfoot_td_attrs and tfoot_th_attrs options have been removed.
	The live_view version requirement has been changed to ~> 0.17.0.
	Better error messages for invalid assigns have been added.

 How to upgrade

Update the path_helper and path_helper_args assigns set for the table
and pagination component:
- path_helper={&Routes.pet_path/3}
- path_helper_args={[@socket, :index]}
+ path_helper={{Routes, :pet_path, [@socket, :index]}}
If you prefer, you can pass a function instead.
+ path_helper={{&Routes.pet_path/3, [@socket, :index]}}
Update any calls to Flop.Phoenix.build_path/4:
- Flop.Phoenix.build_path(&Routes.pet_path/3, [@socket, :index], meta)
+ Flop.Phoenix.build_path({Routes, :pet_path, [@socket, :index]}, meta)
If you prefer, you can use a 2-tuple here as well:
+ Flop.Phoenix.build_path({&Routes.pet_path/3, [@socket, :index]}, meta)
Finally, update the tables in your templates:
<Flop.Phoenix.table
 for={MyApp.Pet}
 items={@pets}
 meta={@meta}
- path_helper={&Routes.pet_path/3}
- path_helper_args={[@socket, :index]}
+ path_helper={{Routes, :pet_path, [@socket, :index]}}
- headers={[{"Name", :name}, {"Age", :age}]}
- row_func={fn pet, _opts -> [pet.name, pet.age] end}
- footer={["", @average_age]}
- />
+ >
+ <:col let={pet} label="Name" field={:name}><%= pet.name %></:col>
+ <:col let={pet} label="Age" field={:age}><%= pet.age %></:col>

+ <:foot>
+ <tr>
+ <td></td>
+ <td><%= @average_age %></td>
+ </tr>
+ </:foot>
+ </Flop.Phoenix.table>
Also, you can remove tfoot_td_attrs and tfoot_th_attrs from the opts
assign (or opts provider function).

 [0.10.0] - 2021-10-24

 Added

	It is now possible to set global options for the components in your config.

config :flop_phoenix,
 pagination: [opts: {MyApp.ViewHelpers, :pagination_opts}],
 table: [opts: {MyApp.ViewHelpers, :table_opts}]

 Changed

	The for, event and target options moved from the opts assign to the
root. The opts assign is now exclusively used for customization options
that modify the appearance, which are usually set globally for a
project and are not related to the specific data or view.
	The row_func/2 function passed to the table component receives the new
row_opts assign now instead of the opts assign.
	The pagination and table components only pass the for option to the query
builder, instead of all opts.
	The path_helper and path_helper_args assigns are now optional if an
event is passed. A descriptive error is raised if neither of them are
passed.
	The opts assign for the pagination and table components is now optional.
	Aria labels were added to the links to the first and last page.
	The aria-sort attribute was added to the table headers.

 How to upgrade

	Remove the for, event and target from the opts assign and add them
as regular assigns at the root level.
	Move any key/value pairs that are needed by your row_func from opts to
row_opts.

For example, if your row_func looks like this:
def table_row(%Pet{id: id, name: name}, opts) do
 socket = Keyword.fetch!(opts, :socket)
 [name, link("show", to: Routes.pet_path(socket, :show, id))]
end
Update your template like this:
<Flop.Phoenix.sortable_table
 row_func={&table_row/2}
- opts={[
- container: true,
- for: Pet,
- event: "sort-table",
- target: @myself,
- socket: @socket
-]}
+ row_opts={[socket: @socket]}
+ for={Pet}
+ event="sort-table"
+ target={@myself}
+ opts={[container: true]}
/>

<Flop.Phoenix.pagination
- opts={[
- for: Pet,
- event: "paginate",
- target: @myself,
- page_links: {:ellipsis, 7}
-]}
+ for={Pet}
+ event="paginate"
+ target={@myself}
+ opts={[page_links: {:ellipsis, 7}]}
/>

 [0.9.1] - 2021-10-22

 Changed

	Change live_view version requirement to ~> 0.16.0 or ~> 0.17.0.

 [0.9.0] - 2021-10-04

 Added

	Add table foot option for sortable table.

 [0.8.1] - 2021-08-11

 Changed

	Loosen version requirement for Flop.

 [0.8.0] - 2021-08-11

 Added

	New options event and target for the pagination and sortable table
component, which allow to emit pagination and sorting events in LiveView
without patching the URL.

 Changed

	Use HEEx templates for both the pagination and the sortable table component.
Refer to the Readme for usage examples.
	Require live_view ~> 0.16.0.
	Support safe HTML tuples in unsortable table headers.
	Improve documentation with examples for LiveView, HEEx templates and EEx
templates.

 [0.7.0] - 2021-06-13

 Added

	Add wrapper around sortable table header link and order direction indicator.
	Add option current_link_attrs to pagination builder.
	Add options thead_tr_attrs, thead_th_attrs, tbody_tr_attrs and
tbody_td_attrs to table generator.
	Add option no_results_content to table generator, which sets the content
that is going to be displayed instead of the table if the item list is empty.
A default option is applied, so make sure to set the option and/or remove your
own no results messages from your templates when making the upgrade.

 Changed

	The table options table_class, th_wrapper_class, symbol_class and
container_class were replaced in favour of table_attrs,
th_wrapper_attrs, symbol_attrs and container_attrs for more flexibility
and consistency with the pagination generator. To update, rename the options
in your code and wrap the values in keyword lists with a class key
(e.g. container_class: "table-container" =>
container_attrs: [class: "table-container"]).
	The pagination_link_attrs is not applied to current links anymore. Use
current_link_attrs to set the attributes for the current link.
	Omit page=1 and offset=0 when building query parameters.
	Omit default values for order and limit/page size parameters when building
query parameters.
	Requires Flop ~> 0.11.0.

 Fixed

	Order direction indicator was wrapped twice.
	A Flop struct with an offset was resulting in invalid pagination links.

 [0.6.1] - 2021-05-05

 Fixed

	Pagination helper generated invalid links when using default_limit option.

 [0.6.0] - 2021-05-04

 Added

	Add Flop.Phoenix.table/1 for rendering sortable tables.
	Add function Flop.Phoenix.to_query/1, which converts a Flop struct into
a keyword list for query parameters.
	Add function Flop.Phoenix.build_path/3, which applies Flop parameters to a
Phoenix path helper function.

 Removed

	Remove Flop.Phoenix.Live.PaginationComponent in favor of making
Flop.Phoenix.pagination/4 work in both .eex and .leex templates.

 [0.5.1] - 2021-04-14

 Fixed

	Merge pagination query parameters into existing query parameters, if present.

 [0.5.0] - 2021-03-23

 Changed

	Rename FlopPhoenix to Flop.Phoenix.
	Add Flop.Phoenix.Live.PaginationComponent for use with Phoenix.LiveView.
	Change pagination to always display links to the first and last page.

 [0.4.0] - 2020-09-04

 Changed

	Allow usage with newer versions of Flop.

 [0.3.0] - 2020-06-17

 Added

	New option to hide the number of page links.
	New option to limit the number of page links.

 Changed

	Add order and filter parameters to pagination links.

 [0.2.0] - 2020-06-15

 Added

	Improve documentation.

 Changed

	previous_link/3, next_link/3 and page_links/3 are private functions now.

 [0.1.0] - 2020-06-15

Initial release

Flop.Phoenix

Phoenix components for pagination, sortable tables and filter forms with
Flop.

 Introduction

Please refer to the Readme for an introduction.

 Customization

The default classes, attributes, texts and symbols can be overridden by
passing the opts assign. Since you probably will use the same opts in all
your templates, you can globally configure an opts provider function for
each component.
The functions have to return the options as a keyword list. The overrides
are deep-merged into the default options.
defmodule MyAppWeb.CoreComponents do
 use Phoenix.Component

 def pagination_opts do
 [
 ellipsis_attrs: [class: "ellipsis"],
 ellipsis_content: "‥",
 next_link_attrs: [class: "next"],
 next_link_content: next_icon(),
 page_links: {:ellipsis, 7},
 pagination_link_aria_label: &"#{&1}ページ目へ",
 previous_link_attrs: [class: "prev"],
 previous_link_content: previous_icon()
]
 end

 defp next_icon do
 assigns = %{}

 ~H"""
 <i class="fas fa-chevron-right"/>
 """
 end

 defp previous_icon do
 assigns = %{}

 ~H"""
 <i class="fas fa-chevron-left"/>
 """
 end

 def table_opts do
 [
 container: true,
 container_attrs: [class: "table-container"],
 no_results_content: no_results_content(),
 table_attrs: [class: "table"]
]
 end

 defp no_results_content do
 assigns = %{}

 ~H"""
 <p>Nothing found.</p>
 """
 end
end
Refer to pagination_option/0 and table_option/0 for a list of
available options and defaults.
Once you have defined these functions, you can reference them with a
module/function tuple in config/config.exs.
config :flop_phoenix,
 pagination: [opts: {MyApp.CoreComponents, :pagination_opts}],
 table: [opts: {MyApp.CoreComponents, :table_opts}]

 Hiding default parameters

Default values for page size and ordering are omitted from the query
parameters. If you pass the :for assign, the Flop.Phoenix function will
pick up the default values from the schema module deriving Flop.Schema.

 Links

Links are generated with Phoenix.Components.link/1. This will
lead to <a> tags with data-phx-link and data-phx-link-state attributes,
which will be ignored outside of LiveViews and LiveComponents.
When used within a LiveView or LiveComponent, you will need to handle the new
params in the Phoenix.LiveView.handle_params/3 callback of your LiveView
module.

 Using JS commands

You can pass a Phoenix.LiveView.JS command as on_paginate and on_sort
attributes.
If used with the path attribute, the URL will be patched and the given
JS command will be executed.
If used without the path attribute, you will need to include a push
command to trigger an event when a pagination or sort link is clicked.
You can set a different target by assigning a :target. The value
will be used as the phx-target attribute.
<Flop.Phoenix.table
 items={@items}
 meta={@meta}
 on_sort={JS.push("sort-pets")}
 target={@myself}
/>

<Flop.Phoenix.pagination
 meta={@meta}
 on_paginate={JS.push("paginate-pets")}
 target={@myself}
/>
You will need to handle the event in the Phoenix.LiveView.handle_event/3
or Phoenix.LiveComponent.handle_event/3 callback of your
LiveView or LiveComponent module. The event name will be the one you set with
the :event option.
def handle_event("paginate-pets", %{"page" => page}, socket) do
 flop = Flop.set_page(socket.assigns.meta.flop, page)

 with {:ok, {pets, meta}} <- Pets.list_pets(flop) do
 {:noreply, assign(socket, pets: pets, meta: meta)}
 end
end

def handle_event("sort-pets", %{"order" => order}, socket) do
 flop = Flop.push_order(socket.assigns.meta.flop, order)

 with {:ok, {pets, meta}} <- Pets.list_pets(flop) do
 {:noreply, assign(socket, pets: pets, meta: meta)}
 end
end

 Summary

 Components

 cursor_pagination(assigns)

 Renders a cursor pagination element.

 filter_fields(assigns)

 Renders all inputs for a filter form including the hidden inputs.

 hidden_inputs_for_filter(assigns)

 Renders hidden inputs for the given form.

 pagination(assigns)

 Generates a pagination element.

 table(assigns)

 Generates a table with sortable columns.

 Miscellaneous

 build_path(path, meta_or_flop_or_params, opts \\ [])

 Builds a path that includes query parameters for the given Flop struct
using the referenced Phoenix path helper function.

 to_query(flop, opts \\ [])

 Converts a Flop struct into a keyword list that can be used as a query with
Phoenix verified routes or route helper functions.

 Types

 cursor_pagination_option()

 Defines the available options for Flop.Phoenix.cursor_pagination/1.

 pagination_option()

 Defines the available options for Flop.Phoenix.pagination/1.

 table_option()

 Defines the available options for Flop.Phoenix.table/1.

 Components

 Link to this function

 cursor_pagination(assigns)

 View Source

 @spec cursor_pagination(map()) :: Phoenix.LiveView.Rendered.t()

Renders a cursor pagination element.

 Examples

<Flop.Phoenix.cursor_pagination
 meta={@meta}
 path={~p"/pets"}
/>

<Flop.Phoenix.cursor_pagination
 meta={@meta}
 path={{Routes, :pet_path, [@socket, :index]}}
/>

 Handling parameters and JS commands

If you set the path assign, a link with query parameters is rendered.
In a LiveView, you need to handle the parameters in the
Phoenix.LiveView.handle_params/3 callback.
def handle_params(params, _, socket) do
 {pets, meta} = MyApp.list_pets(params)
 {:noreply, assign(socket, meta: meta, pets: pets)}
end
If you use LiveView and set the on_paginate attribute, you need to update
the Flop parameters in the handle_event/3 callback.
def handle_event("paginate-users", %{"to" => to}, socket) do
 flop = Flop.set_cursor(socket.assigns.meta, to)
 {pets, meta} = MyApp.list_pets(flop)
 {:noreply, assign(socket, meta: meta, pets: pets)}
end

 Getting the right parameters from Flop

This component requires the start and end cursors to be set in Flop.Meta. If
you pass a Flop.Meta struct with page or offset-based parameters, this will
result in an error. You can enforce cursor-based pagination in your query
function with the default_pagination_type and pagination_types options.
def list_pets(params) do
 Flop.validate_and_run!(Pet, params,
 for: Pet,
 default_pagination_type: :first,
 pagination_types: [:first, :last]
)
end
default_pagination_type ensures that Flop defaults to the right pagination
type when it cannot determine the type from the parameters. pagination_types
ensures that parameters for other types are not accepted.

 Order fields

The pagination cursor is based on the ORDER BY fields of the query. It is
important that the combination of order fields is unique across the data set.
You can use:
	the field with the primary key
	a field with a unique index
	all fields of a composite primary key or unique index

If you want to order by fields that are not unique, you can add the primary
key as the last order field. For example, if you want to order by family name
and given name, you should set the order_by parameter to
[:family_name, :given_name, :id].

 Attributes

	meta (Flop.Meta) (required) - The meta information of the query as returned by the Flop query functions.

	path (:any) - If set, the current view is patched with updated query parameters when a
pagination link is clicked. In case the on_paginate attribute is set as
well, the URL is patched and the given JS command is executed.
The value must be either a URI string (Phoenix verified route), an MFA or FA
tuple (Phoenix route helper), or a 1-ary path builder function. See
Flop.Phoenix.build_path/3 for details.
Defaults to nil.

	on_paginate (Phoenix.LiveView.JS) - A Phoenix.LiveView.JS command that is triggered when a pagination link is
clicked.
If used without the path attribute, you should include a push operation
to handle the event with the handle_event callback.
<.cursor_pagination
 meta={@meta}
 on_paginate={
 JS.dispatch("my_app:scroll_to", to: "#pet-table") |> JS.push("paginate")
 }
/>
If used with the path attribute, the URL is patched and the given JS
command is executed.
<.cursor_pagination
 meta={@meta}
 path={~"/pets"}
 on_paginate={JS.dispatch("my_app:scroll_to", to: "#pet-table")}
/>
With the above attributes in place, you can add the following JavaScript to
your application to scroll to the top of your table whenever a pagination
link is clicked:
window.addEventListener("my_app:scroll_to", (e) => {
 e.target.scrollIntoView();
});
You can use CSS to scroll to the new position smoothly.
html {
 scroll-behavior: smooth;
}
Defaults to nil.

	event (:string) - If set, Flop.Phoenix will render links with a phx-click attribute.
Alternatively, set :path, if you want the parameters to appear in the URL.
Deprecated. Use on_paginate instead.
Defaults to nil.

	target (:string) - Sets the phx-target attribute for the pagination links. Defaults to nil.

	reverse (:boolean) - By default, the next link moves forward with the :after parameter set to
the end cursor, and the previous link moves backward with the :before
parameter set to the start cursor. If reverse is set to true, the
destinations of the links are switched.
Defaults to false.

	opts (:list) - Options to customize the pagination. See
Flop.Phoenix.cursor_pagination_option/0. Note that the options passed to
the function are deep merged into the default options. Since these options
will likely be the same for all the cursor pagination links in a project,
it is recommended to define them once in a function or set them in a
wrapper function as described in the Customization section of the module
documentation.
Defaults to [].

 Link to this function

 filter_fields(assigns)

 View Source

 (since 0.12.0)

 @spec filter_fields(map()) :: Phoenix.LiveView.Rendered.t()

Renders all inputs for a filter form including the hidden inputs.

 Example

def filter_form(%{meta: meta} = assigns) do
 assigns = assign(assigns, :form, Phoenix.Component.to_form(meta))

 ~H"""
 <.form for={@form}>
 <.filter_fields :let={i} form={@form} fields={[:email, :name]}>
 <.input
 field={i.field}
 label={i.label}
 type={i.type}
 {i.rest}
 />
 </.filter_fields>
 </.form>
 """
end
This assumes that you have defined an input component that renders a form
input including the label.
These options are passed to the inner block via :let:
	The field is a Phoenix.HTML.FormField.t struct.
	The type is the input type as a string, not the name of the
Phoenix.HTML.Form input function (e.g. "text", not :text_input). The
type is derived from the type of the field being filtered on, but it can
be overridden in the field options.
	rest contains any additional field options passed.

 Field configuration

The fields can be passed as atoms or keywords with additional options.
fields={[:name, :email]}
Or
fields={[
 name: [label: gettext("Name")],
 email: [
 label: gettext("Email"),
 op: :ilike_and,
 type: "email"
],
 age: [
 label: gettext("Age"),
 type: "select",
 prompt: "",
 options: [
 {gettext("young"), :young},
 {gettext("old"), :old)}
]
]
]}
Available options:
	label - Defaults to the humanized field name.
	op - Defaults to :==.
	type - Defaults to an input type depending on the Ecto type of the filter
field.

Any additional options will be passed to the input component (e.g. HTML
classes or a list of options).

 Attributes

	form (Phoenix.HTML.Form) (required)

	fields (:list) - The list of fields and field options. Note that inputs will not be rendered
for fields that are not marked as filterable in the schema
(see Flop.Schema).
If dynamic is set to false, only fields in this list are rendered. If
dynamic is set to true, only fields for filters present in the given
Flop.Meta struct are rendered, and the fields are rendered even if they
are not passed in the fields list. In the latter case, fields is
optional, but you can still pass label and input configuration this way.
Note that in a dynamic form, it is not possible to configure a single field
multiple times.
Defaults to [].

	dynamic (:boolean) - If true, fields are only rendered for filters that are present in the
Flop.Meta struct passed to the form. You can use this for rendering filter
forms that allow the user to add and remove filters dynamically. The
fields assign is only used for looking up the options in that case.
Defaults to false.

 Slots

	inner_block - The necessary options for rendering a label and an input are passed to the
inner block, which allows you to render the fields with your existing
components.<.filter_fields :let={i} form={@form} fields={[:email, :name]}>
 <.input
 field={i.field}
 label={i.label}
 type={i.type}
 {i.rest}
 />
</.filter_fields>
The options passed to the inner block are:	field - A Phoenix.HTML.FormField struct.
	type - The input type as a string.
	label - The label text as a string.
	rest - Any additional options passed in the field options.

 Link to this function

 hidden_inputs_for_filter(assigns)

 View Source

 (since 0.16.0)

Renders hidden inputs for the given form.
You can use this for convenience if you have a complex form layout that cannot
be accomplished with Flop.Phoenix.filter_fields/1. Put it as a direct child
of the form component to render the hidden inputs for pagination and order
parameters. Then use PhoenixHTMLHelpers.Form.inputs_for/3 to render a single
filter field, and place this component within the anonymous function to render the
hidden inputs for the filter field and operator.
Since the filters are represented as an array in the params, make sure to
add the offset option so that the Flop.Meta can be properly mapped back to
your input fields. For every call to inputs_for always add the length of all
previous calls to inputs_for as offset.
<.form :let={f} for={@meta}>
 <.hidden_inputs_for_filter form={@form} />

 <div class="field-group">
 <div class="field">
 <%= PhoenixHTMLHelpers.Form.inputs_for f, :filters, [fields: [:name]], fn ff -> %>
 <.hidden_inputs_for_filter form={ff} />
 <.input label="Name" type="text" field={{ff, :value}} />
 <% end %>
 </div>
 <div class="field">
 <%= PhoenixHTMLHelpers.Form.inputs_for f, :filters, [fields: [{:email, op: :ilike}], offset: 1] fn ff -> %>
 <.hidden_inputs_for_filter form={ff} />
 <.input label="E-mail" type="email" field={{ff, :value}} />
 <% end %>
 </div>
 </div>
</.form>

 Attributes

	form (Phoenix.HTML.Form) (required)

 Link to this function

 pagination(assigns)

 View Source

 @spec pagination(map()) :: Phoenix.LiveView.Rendered.t()

Generates a pagination element.

 Examples

<Flop.Phoenix.pagination
 meta={@meta}
 path={~p"/pets"}
/>

<Flop.Phoenix.pagination
 meta={@meta}
 path={{Routes, :pet_path, [@socket, :index]}}
/>

 Page link options

By default, page links for all pages are shown. You can limit the number of
page links or disable them altogether by passing the :page_links option.
	:all: Show all page links (default).
	:hide: Don't show any page links. Only the previous/next links will be
shown.
	{:ellipsis, x}: Limits the number of page links. The first and last page
are always displayed. The x refers to the number of additional page links
to show.

 Pagination link aria label

For the page links, there is the :pagination_link_aria_label option to set
the aria label. Since the page number is usually part of the aria label, you
need to pass a function that takes the page number as an integer and returns
the label as a string. The default is &"Goto page #{&1}".

 Previous/next links

By default, the previous and next links contain the texts Previous and
Next. To change this, you can pass the :previous_link_content and
:next_link_content options.

 Attributes

	meta (Flop.Meta) (required) - The meta information of the query as returned by the Flop query functions.

	path (:any) - If set, the current view is patched with updated query parameters when a
pagination link is clicked. In case the on_paginate attribute is set as
well, the URL is patched and the given command is executed.
The value must be either a URI string (Phoenix verified route), an MFA or FA
tuple (Phoenix route helper), or a 1-ary path builder function. See
Flop.Phoenix.build_path/3 for details.
Defaults to nil.

	on_paginate (Phoenix.LiveView.JS) - A Phoenix.LiveView.JS command that is triggered when a pagination link is
clicked.
If used without the path attribute, you should include a push operation
to handle the event with the handle_event callback.
<.pagination
 meta={@meta}
 on_paginate={
 JS.dispatch("my_app:scroll_to", to: "#pet-table") |> JS.push("paginate")
 }
/>
If used with the path attribute, the URL is patched and the given
JS command is executed.
<.pagination
 meta={@meta}
 path={~"/pets"}
 on_paginate={JS.dispatch("my_app:scroll_to", to: "#pet-table")}
/>
With the above attributes in place, you can add the following JavaScript to
your application to scroll to the top of your table whenever a pagination
link is clicked:
window.addEventListener("my_app:scroll_to", (e) => {
 e.target.scrollIntoView();
});
You can use CSS to scroll to the new position smoothly.
html {
 scroll-behavior: smooth;
}
Defaults to nil.

	event (:string) - If set, Flop.Phoenix will render links with a phx-click attribute.
Alternatively, set :path, if you want the parameters to appear in the URL.
Deprecated in favor of on_paginate.
Defaults to nil.

	target (:string) - Sets the phx-target attribute for the pagination links. Defaults to nil.

	opts (:list) - Options to customize the pagination. See
Flop.Phoenix.pagination_option/0. Note that the options passed to the
function are deep merged into the default options. Since these options will
likely be the same for all the tables in a project, it is recommended to
define them once in a function or set them in a wrapper function as
described in the Customization section of the module documentation.
Defaults to [].

 Link to this function

 table(assigns)

 View Source

 (since 0.6.0)

 @spec table(map()) :: Phoenix.LiveView.Rendered.t()

Generates a table with sortable columns.

 Example

<Flop.Phoenix.table items={@pets} meta={@meta} path={~p"/pets"}>
 <:col :let={pet} label="Name" field={:name}><%= pet.name %></:col>
 <:col :let={pet} label="Age" field={:age}><%= pet.age %></:col>
</Flop.Phoenix.table>

 Flop.Schema

If you pass the for option when making the query with Flop, Flop Phoenix can
determine which table columns are sortable. It also hides the order and
page_size parameters if they match the default values defined with
Flop.Schema.

 Attributes

	id (:string) - ID used on the table. If not set, an ID is chosen based on the schema
module derived from the Flop.Meta struct.
The ID is necessary in case the table is fed with a LiveView stream.

	items (:list) (required) - The list of items to be displayed in rows. This is the result list returned
by the query.

	meta (Flop.Meta) (required) - The Flop.Meta struct returned by the query function.

	path (:any) - If set, the current view is patched with updated query parameters when a
header link for sorting is clicked. In case the on_sort attribute is
set as well, the URL is patched and the given JS command is executed.
The value must be either a URI string (Phoenix verified route), an MFA or FA
tuple (Phoenix route helper), or a 1-ary path builder function. See
Flop.Phoenix.build_path/3 for details.
Defaults to nil.

	on_sort (Phoenix.LiveView.JS) - A Phoenix.LiveView.JS command that is triggered when a header link for
sorting is clicked.
If used without the path attribute, you should include a push operation
to handle the event with the handle_event callback.
<.table
 items={@items}
 meta={@meta}
 on_sort={
 JS.dispatch("my_app:scroll_to", to: "#pet-table") |> JS.push("sort")
 }
/>
If used with the path attribute, the URL is patched and the given
JS command is executed.
<.table
 meta={@meta}
 path={~"/pets"}
 on_sort={JS.dispatch("my_app:scroll_to", to: "#pet-table")}
/>
Defaults to nil.

	event (:string) - If set, Flop.Phoenix will render links with a phx-click attribute.
Alternatively, set :path, if you want the parameters to appear in the URL.
Deprecated in favor of on_sort.
Defaults to nil.

	target (:string) - Sets the phx-target attribute for the header links. Defaults to nil.

	caption (:string) - Content for the <caption> element. Defaults to nil.

	opts (:list) - Keyword list with additional options (see Flop.Phoenix.table_option/0).
Note that the options passed to the function are deep merged into the
default options. Since these options will likely be the same for all the
tables in a project, it is recommended to define them once in a function or
set them in a wrapper function as described in the Customization section
of the module documentation.
Defaults to [].

	row_id (:any) - Overrides the default function that retrieves the row ID from a stream item. Defaults to nil.

	row_click (Phoenix.LiveView.JS) - Sets the phx-click function attribute for each row td. Expects to be a
function that receives a row item as an argument. This does not add the
phx-click attribute to the action slot.
Example:
row_click={&JS.navigate(~p"/users/#{&1}")}
Defaults to nil.

	row_item (:any) - This function is called on the row item before it is passed to the :col
and :action slots.
Defaults to &Function.identity/1.

 Slots

	col (required) - For each column to render, add one <:col> element.
<:col :let={pet} label="Name" field={:name} col_style="width: 20%;">
 <%= pet.name %>
</:col>
Any additional assigns will be added as attributes to the <td> elements.
Accepts attributes:
	label (:any) - The content for the header column.

	field (:atom) - The field name for sorting. If set and the field is configured as sortable
in the schema, the column header will be clickable, allowing the user to
sort by that column. If the field is not marked as sortable or if the
field attribute is omitted or set to nil or false, the column header
will not be clickable.

	directions (:any) - An optional 2-element tuple used for custom ascending and descending sort
behavior for the column, i.e. {:asc_nulls_last, :desc_nulls_first}

	show (:boolean) - Boolean value to conditionally show the column. Defaults to true
Deprecated. Use :if instead.

	hide (:boolean) - Boolean value to conditionally hide the column. Defaults to false.
Deprecated. Use :if instead.

	col_style (:string) - If set, a <colgroup> element is rendered and the value of the
col_style assign is set as style attribute for the <col> element of
the respective column. You can set the width, background, border,
and visibility of a column this way.

	col_class (:string) - If set, a <colgroup> element is rendered and the value of the
col_class assign is set as class attribute for the <col> element of
the respective column. You can set the width, background, border,
and visibility of a column this way.

	thead_th_attrs (:list) - Additional attributes to pass to the <th> element as a static keyword
list. Note that these attributes will override any conflicting
thead_th_attrs that are set at the table level.

	th_wrapper_attrs (:list) - Additional attributes for the element that wraps the
header link and the order direction symbol. Note that these attributes
will override any conflicting th_wrapper_attrs that are set at the table
level.

	tbody_td_attrs (:any) - Additional attributes to pass to the <td> element. May be provided as a
static keyword list, or as a 1-arity function to dynamically generate the
list using row data. Note that these attributes will override any
conflicting tbody_td_attrs that are set at the table level.

	action - The slot for showing user actions in the last table column. These columns
do not receive the row_click attribute.
<:action :let={user}>
 <.link navigate={~p"/users/#{user}"}>Show</.link>
</:action>
Accepts attributes:
	label (:string) - The content for the header column.

	show (:boolean) - Boolean value to conditionally show the column. Defaults to true.

	hide (:boolean) - Boolean value to conditionally hide the column. Defaults to false.

	col_style (:string) - If set, a <colgroup> element is rendered and the value of the
col_style assign is set as style attribute for the <col> element of
the respective column. You can set the width, background, border,
and visibility of a column this way.

	col_class (:string) - If set, a <colgroup> element is rendered and the value of the
col_class assign is set as class attribute for the <col> element of
the respective column. You can set the width, background, border,
and visibility of a column this way.

	thead_th_attrs (:list) - Any additional attributes to pass to the <th> as a keyword list.

	tbody_td_attrs (:any) - Any additional attributes to pass to the <td>. Can be a keyword list or
a function that takes the current row item as an argument and returns a
keyword list.

	foot - You can optionally add a foot. The inner block will be rendered inside
a tfoot element.
<Flop.Phoenix.table>
 <:foot>
 <tr><td>Total: <%= @total %></td></tr>
 </:foot>
</Flop.Phoenix.table>

 Miscellaneous

 Link to this function

 build_path(path, meta_or_flop_or_params, opts \\ [])

 View Source

 (since 0.6.0)

 @spec build_path(
 String.t()
 | {module(), atom(), [any()]}
 | {function(), [any()]}
 | (keyword() -> String.t()),
 Flop.Meta.t() | Flop.t() | keyword(),
 keyword()
) :: String.t()

Builds a path that includes query parameters for the given Flop struct
using the referenced Phoenix path helper function.
The first argument can be either one of:
	an MFA tuple (module, function name as atom, arguments)
	a 2-tuple (function, arguments)
	a URL string, usually produced with a verified route (e.g. ~p"/some/path")
	a function that takes the Flop parameters as a keyword list as an argument

Default values for limit, page_size, order_by and order_directions are
omitted from the query parameters. To pick up the default parameters from a
schema module deriving Flop.Schema, you need to pass the :for option. To
pick up the default parameters from the backend module, you need to pass the
:backend option. If you pass a Flop.Meta struct as the second argument,
these options are retrieved from the struct automatically.
Date and Time Filters
When using filters on Date, DateTime, NaiveDateTime or Time fields,
you may need to implement the Phoenix.Param protocol for these structs.
See the documentation for to_query/2.

 Examples

 With a verified route

The examples below use plain URL strings without the p-sigil, so that the
doc tests work, but in your application, you can use verified routes or
anything else that produces a URL.
iex> flop = %Flop{page: 2, page_size: 10}
iex> path = build_path("/pets", flop)
iex> %URI{path: parsed_path, query: parsed_query} = URI.parse(path)
iex> {parsed_path, URI.decode_query(parsed_query)}
{"/pets", %{"page" => "2", "page_size" => "10"}}
The Flop query parameters will be merged into existing query parameters.
iex> flop = %Flop{page: 2, page_size: 10}
iex> path = build_path("/pets?species=dogs", flop)
iex> %URI{path: parsed_path, query: parsed_query} = URI.parse(path)
iex> {parsed_path, URI.decode_query(parsed_query)}
{"/pets", %{"page" => "2", "page_size" => "10", "species" => "dogs"}}

 With an MFA tuple

iex> flop = %Flop{page: 2, page_size: 10}
iex> build_path(
...> {Flop.PhoenixTest, :route_helper, [%Plug.Conn{}, :pets]},
...> flop
...>)
"/pets?page_size=10&page=2"

 With a function/arguments tuple

iex> pet_path = fn _conn, :index, query ->
...> "/pets?" <> Plug.Conn.Query.encode(query)
...> end
iex> flop = %Flop{page: 2, page_size: 10}
iex> build_path({pet_path, [%Plug.Conn{}, :index]}, flop)
"/pets?page_size=10&page=2"
We're defining fake path helpers for the scope of the doctests. In a real
Phoenix application, you would pass something like
{Routes, :pet_path, args} or {&Routes.pet_path/3, args} as the
first argument.

 Passing a Flop.Meta struct or a keyword list

You can also pass a Flop.Meta struct or a keyword list as the third
argument.
iex> pet_path = fn _conn, :index, query ->
...> "/pets?" <> Plug.Conn.Query.encode(query)
...> end
iex> flop = %Flop{page: 2, page_size: 10}
iex> meta = %Flop.Meta{flop: flop}
iex> build_path({pet_path, [%Plug.Conn{}, :index]}, meta)
"/pets?page_size=10&page=2"
iex> query_params = to_query(flop)
iex> build_path({pet_path, [%Plug.Conn{}, :index]}, query_params)
"/pets?page_size=10&page=2"

 Additional path parameters

If the path helper takes additional path parameters, just add them to the
second argument.
iex> user_pet_path = fn _conn, :index, id, query ->
...> "/users/#{id}/pets?" <> Plug.Conn.Query.encode(query)
...> end
iex> flop = %Flop{page: 2, page_size: 10}
iex> build_path({user_pet_path, [%Plug.Conn{}, :index, 123]}, flop)
"/users/123/pets?page_size=10&page=2"

 Additional query parameters

If the last path helper argument is a query parameter list, the Flop
parameters are merged into it.
iex> pet_url = fn _conn, :index, query ->
...> "https://pets.flop/pets?" <> Plug.Conn.Query.encode(query)
...> end
iex> flop = %Flop{order_by: :name, order_directions: [:desc]}
iex> build_path({pet_url, [%Plug.Conn{}, :index, [user_id: 123]]}, flop)
"https://pets.flop/pets?user_id=123&order_directions[]=desc&order_by=name"
iex> build_path(
...> {pet_url,
...> [%Plug.Conn{}, :index, [category: "small", user_id: 123]]},
...> flop
...>)
"https://pets.flop/pets?category=small&user_id=123&order_directions[]=desc&order_by=name"

 Set page as path parameter

Finally, you can also pass a function that takes the Flop parameters as
a keyword list as an argument. Default values will not be included in the
parameters passed to the function. You can use this if you need to set some
of the parameters as path parameters instead of query parameters.
iex> flop = %Flop{page: 2, page_size: 10}
iex> build_path(
...> fn params ->
...> {page, params} = Keyword.pop(params, :page)
...> query = Plug.Conn.Query.encode(params)
...> if page, do: "/pets/page/#{page}?#{query}", else: "/pets?#{query}"
...> end,
...> flop
...>)
"/pets/page/2?page_size=10"
Note that in this example, the anonymous function just returns a string. With
Phoenix 1.7, you will be able to use verified routes.
build_path(
 fn params ->
 {page, query} = Keyword.pop(params, :page)
 if page, do: ~p"/pets/page/#{page}?#{query}", else: ~p"/pets?#{query}"
 end,
 flop
)
Note that the keyword list passed to the path builder function is built using
Plug.Conn.Query.encode/2, which means filters are formatted as map with
integer keys.

 Set filter value as path parameter

If you need to set a filter value as a path parameter, you can use
Flop.Filter.pop/3.
iex> flop = %Flop{
...> page: 5,
...> order_by: [:published_at],
...> filters: [
...> %Flop.Filter{field: :category, op: :==, value: "announcements"}
...>]
...> }
iex> build_path(
...> fn params ->
...> {page, params} = Keyword.pop(params, :page)
...> filters = Keyword.get(params, :filters, [])
...> {category, filters} = Flop.Filter.pop(filters, :category)
...> params = Keyword.put(params, :filters, filters)
...> query = Plug.Conn.Query.encode(params)
...>
...> case {page, category} do
...> {nil, nil} -> "/articles?#{query}"
...> {page, nil} -> "/articles/page/#{page}?#{query}"
...> {nil, %{value: category}} -> "/articles/category/#{category}?#{query}"
...> {page, %{value: category}} -> "/articles/category/#{category}/page/#{page}?#{query}"
...> end
...> end,
...> flop
...>)
"/articles/category/announcements/page/5?order_by[]=published_at"

 Link to this function

 to_query(flop, opts \\ [])

 View Source

 (since 0.6.0)

Converts a Flop struct into a keyword list that can be used as a query with
Phoenix verified routes or route helper functions.

 Default parameters

Default parameters for the limit and order parameters are omitted. The
defaults are determined by calling Flop.get_option/3.
	Pass the :for option to pick up the default values from a schema module
deriving Flop.Schema.
	Pass the :backend option to pick up the default values from your backend
configuration.
	If neither the schema module nor the backend module have default options
set, the function will fall back to the application environment.

 Encoding queries

To encode the returned query as a string, you will need to use
Plug.Conn.Query.encode/1. URI.encode_query/1 does not support bracket
notation for arrays and maps.

 Date and time filters

If you use the result of this function directly with
Phoenix.VerifiedRoutes.sigil_p/2 for verified routes or in a route helper
function, all cast filter values need to be able to be converted to a string
using the Phoenix.Param protocol.
This protocol is implemented by default for integers, binaries, atoms, and
structs. For structs, Phoenix's default behavior is to fetch the id field.
If you have filters with Date, DateTime, NaiveDateTime,
Time values, or any other custom structs (e.g. structs that represent
composite types like a range column), you will need to implement the protocol
for these specific structs in your application.
defimpl Phoenix.Param, for: Date do
 def to_param(%Date{} = d), do: to_string(d)
end

defimpl Phoenix.Param, for: DateTime do
 def to_param(%DateTime{} = dt), do: to_string(dt)
end

defimpl Phoenix.Param, for: NaiveDateTime do
 def to_param(%NaiveDateTime{} = dt), do: to_string(dt)
end

defimpl Phoenix.Param, for: Time do
 def to_param(%Time{} = t), do: to_string(t)
end
It is important that the chosen string representation can be cast back into
the Ecto type.

 Examples

iex> to_query(%Flop{})
[]

iex> f = %Flop{page: 5, page_size: 20}
iex> to_query(f)
[page_size: 20, page: 5]

iex> f = %Flop{first: 20, after: "g3QAAAABZAAEbmFtZW0AAAAFQXBwbGU="}
iex> to_query(f)
[first: 20, after: "g3QAAAABZAAEbmFtZW0AAAAFQXBwbGU="]

iex> f = %Flop{
...> filters: [
...> %Flop.Filter{field: :name, op: :=~, value: "Mag"},
...> %Flop.Filter{field: :age, op: :>, value: 25}
...>]
...> }
iex> to_query(f)
[
 filters: %{
 0 => %{field: :name, op: :=~, value: "Mag"},
 1 => %{field: :age, op: :>, value: 25}
 }
]
iex> to_query(f)
[filters: %{0 => %{value: "Mag", op: :=~, field: :name}, 1 => %{value: 25, op: :>, field: :age}}]

iex> f = %Flop{page: 5, page_size: 20}
iex> to_query(f, default_limit: 20)
[page: 5]
Encoding the query as a string:
iex> f = %Flop{order_by: [:name, :age], order_directions: [:desc, :asc]}
iex> to_query(f)
[order_directions: [:desc, :asc], order_by: [:name, :age]]
iex> f |> to_query |> Plug.Conn.Query.encode()
"order_directions[]=desc&order_directions[]=asc&order_by[]=name&order_by[]=age"

 Types

 Link to this type

 cursor_pagination_option()

 View Source

 @type cursor_pagination_option() ::
 {:disabled_class, String.t()}
 | {:next_link_attrs, keyword()}
 | {:next_link_content, Phoenix.HTML.safe() | binary()}
 | {:previous_link_attrs, keyword()}
 | {:previous_link_content, Phoenix.HTML.safe() | binary()}
 | {:wrapper_attrs, keyword()}

Defines the available options for Flop.Phoenix.cursor_pagination/1.
	:disabled - The class which is added to disabled links. Default:
"disabled".
	:next_link_attrs - The attributes for the link to the next page.
Default: [aria: [label: "Go to next page"], class: "pagination-next"].
	:next_link_content - The content for the link to the next page.
Default: "Next".
	:previous_link_attrs - The attributes for the link to the previous page.
Default: [aria: [label: "Go to previous page"], class: "pagination-previous"].
	:previous_link_content - The content for the link to the previous page.
Default: "Previous".
	:wrapper_attrs - The attributes for the <nav> element that wraps the
pagination links.
Default: [class: "pagination", role: "navigation", aria: [label: "pagination"]].

 Link to this type

 pagination_option()

 View Source

 @type pagination_option() ::
 {:current_link_attrs, keyword()}
 | {:disabled_class, String.t()}
 | {:ellipsis_attrs, keyword()}
 | {:ellipsis_content, Phoenix.HTML.safe() | binary()}
 | {:next_link_attrs, keyword()}
 | {:next_link_content, Phoenix.HTML.safe() | binary()}
 | {:page_links, :all | :hide | {:ellipsis, pos_integer()}}
 | {:pagination_link_aria_label, (pos_integer() -> binary())}
 | {:pagination_link_attrs, keyword()}
 | {:pagination_list_attrs, keyword()}
 | {:previous_link_attrs, keyword()}
 | {:previous_link_content, Phoenix.HTML.safe() | binary()}
 | {:wrapper_attrs, keyword()}

Defines the available options for Flop.Phoenix.pagination/1.
	:current_link_attrs - The attributes for the link to the current page.
Default: [class: "pagination-link is-current", aria: [current: "page"]].
	:disabled - The class which is added to disabled links. Default:
"disabled".
	:ellipsis_attrs - The attributes for the that wraps the
ellipsis.
Default: [class: "pagination-ellipsis"].
	:ellipsis_content - The content for the ellipsis element.
Default: {:safe, "…"}.
	:next_link_attrs - The attributes for the link to the next page.
Default: [aria: [label: "Go to next page"], class: "pagination-next"].
	:next_link_content - The content for the link to the next page.
Default: "Next".
	:page_links - Specifies how many page links should be rendered.
Default: :all.	:all - Renders all page links.
	{:ellipsis, n} - Renders n page links. Renders ellipsis elements if
there are more pages than displayed.
	:hide - Does not render any page links.

	:pagination_link_aria_label - 1-arity function that takes a page number
and returns an aria label for the corresponding page link.
Default: &"Go to page #{&1}".
	:pagination_link_attrs - The attributes for the pagination links.
Default: [class: "pagination-link"].
	:pagination_list_attrs - The attributes for the pagination list.
Default: [class: "pagination-list"].
	:previous_link_attrs - The attributes for the link to the previous page.
Default: [aria: [label: "Go to previous page"], class: "pagination-previous"].
	:previous_link_content - The content for the link to the previous page.
Default: "Previous".
	:wrapper_attrs - The attributes for the <nav> element that wraps the
pagination links.
Default: [class: "pagination", role: "navigation", aria: [label: "pagination"]].

 Link to this type

 table_option()

 View Source

 @type table_option() ::
 {:container, boolean()}
 | {:container_attrs, keyword()}
 | {:no_results_content, Phoenix.HTML.safe() | binary()}
 | {:symbol_asc, Phoenix.HTML.safe() | binary()}
 | {:symbol_attrs, keyword()}
 | {:symbol_desc, Phoenix.HTML.safe() | binary()}
 | {:symbol_unsorted, Phoenix.HTML.safe() | binary()}
 | {:table_attrs, keyword()}
 | {:tbody_attrs, keyword()}
 | {:thead_attrs, keyword()}
 | {:tbody_td_attrs, keyword()}
 | {:tbody_tr_attrs, keyword() | (any() -> keyword())}
 | {:th_wrapper_attrs, keyword()}
 | {:thead_th_attrs, keyword()}
 | {:thead_tr_attrs, keyword()}

Defines the available options for Flop.Phoenix.table/1.
	:container - Wraps the table in a <div> if true.
Default: false.
	:container_attrs - The attributes for the table container.
Default: [class: "table-container"].
	:no_results_content - Any content that should be rendered if there are no
results. Default: <p>No results.</p>.
	:table_attrs - The attributes for the <table> element.
Default: [].
	:th_wrapper_attrs - The attributes for the element that wraps the
header link and the order direction symbol.
Default: [].
	:symbol_asc - The symbol that is used to indicate that the column is
sorted in ascending order.
Default: "▴".
	:symbol_attrs - The attributes for the element that wraps the
order direction indicator in the header columns.
Default: [class: "order-direction"].
	:symbol_desc - The symbol that is used to indicate that the column is
sorted in ascending order.
Default: "▾".
	:symbol_unsorted - The symbol that is used to indicate that the column is
not sorted. Default: nil.
	:tbody_attrs: Attributes to be added to the <tbody> tag within the
<table>. Default: [].
	:tbody_td_attrs: Attributes to be added to each <td> tag within the
<tbody>. Default: [].
	:thead_attrs: Attributes to be added to the <thead> tag within the
<table>. Default: [].
	:tbody_tr_attrs: Attributes to be added to each <tr> tag within the
<tbody>. A function with arity of 1 may be passed to dynamically generate
the attrs based on row data.
Default: [].
	:thead_th_attrs: Attributes to be added to each <th> tag within the
<thead>. Default: [].
	:thead_tr_attrs: Attributes to be added to each <tr> tag within the
<thead>. Default: [].

Flop.Phoenix.InvalidFilterFieldConfigError exception

Raised when the fields attribute of the Flop.Phoenix.filter_fields
component is set to an invalid value.

 Summary

 Functions

 message(map)

 Callback implementation for Exception.message/1.

 Functions

 Link to this function

 message(map)

 View Source

Callback implementation for Exception.message/1.

Flop.Phoenix.NoMetaFormError exception

Raised when a Phoenix.HTML.Form struct is passed to
Flop.Phoenix.filter_fields/1 that was not built with Flop.Meta struct.

 Summary

 Functions

 message(_)

 Callback implementation for Exception.message/1.

 Functions

 Link to this function

 message(_)

 View Source

Callback implementation for Exception.message/1.

Flop.Phoenix.PathOrJSError exception

Raised when a neither the path nor the on_* attribute is set for a
pagination or table component.

 Summary

 Functions

 message(map)

 Callback implementation for Exception.message/1.

 Functions

 Link to this function

 message(map)

 View Source

Callback implementation for Exception.message/1.

 OEBPS/dist/epub-RKEUJJI5.js
(()=>{var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function a(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{l(e,!0)}),t.addEventListener("mouseleave",n=>{l(e,!1)})})}function l(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),a()});})();

